The Box Problem

Zenoferox has a very hands-on way to teach his students a math problem: suppose you have a rectangular piece of paper, a*b centimeters on the side. You cut out four x*x squares at each corner, and fold the margins you get to get a box with one face missing. How do you choose x to maximize the value of the box?

For the exact answer in terms of a and b, ask Dr. Math. What I’m thinking of is more about teaching methods for maximum/minimum problems.

The creative exercises, like the box problem or the window problem (maximize the area of a window shaped like a semicircle sitting on a rectangle, given a perimeter a), are a good way of applying principles already learned. I still think the best way to teach the differentiation rule for maximum/minimum problems is to start with a rectangle of a given perimeter and ask to maximize its area. In that case there are enough alternative formulas to help create the intuition that the area is maximized when the rectangle is a square.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: